

A new family of substituted steroidal BINOL-type ligands†

Matthias F. Schneider,* Michael Harre and Christian Pieper

Process Research, *Schering AG*-*Berlin*, *Mu¨llerstraße* 170–178, *D*-13342 *Berlin*, *Germany* Received 18 September 2002; accepted 23 September 2002

Abstract—The short and high yielding synthesis of a new family of substituted bissteroidal BINOL-type ligands employing the bisketone derivatives **Rax-**, **Sax-3** as the centre point of a 'chemical modular construction system' is reported. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

 $BINOL¹$ and $BINAP_z²$ which have been employed in numerous catalytic and stoichiometric asymmetric reactions, have attracted great attention over the last several years as chiral auxiliaries and ligands with C_2 -symmetry. Nevertheless there are at least two drawbacks for these compounds. The enantiomers of BINOL and/or of BINAP have to be separated by (i) transforming the racemic compounds into diastereomeric derivatives; (ii) separation of these derivatives; and (iii) retransformation into BINOL or BINAP. There are still reactions where BINOL or BINAP give only unsatisfactory results concerning the degree of enantioselection.

Therefore we have developed approaches towards a 13,14-*trans* (steroid nomenclature) configured bis-

steroidal phosphine³ starting from equilenine and recently towards the 13,14-*cis* configured phosphine **4**⁴ using estrone as relatively cheap starting material. We have employed these phoshines as chiral ligands in ruthenium based asymmetric hydrogenation cata lvs ts.^{3,4}

Even having accomplished the second synthesis of steroidal BINAP-type ligands (**Rax-**, **Sax-4**), we still saw room for improvement due to some difficulties we had encountered during our synthesis. The chemistry from **1** to the diastereomeric mixture of **2** proceeded uneventful, but we were by no means able to separate the deoxygenated ligands \mathbf{R}_{ax} , \mathbf{S}_{ax} -2 by column chromatography on a preparative scale. Therefore we had to go via the bisketone derivatives \mathbf{R}_{ax} , \mathbf{S}_{ax} , 3 which we were able to separate via a preparative HPLC even on a kilogram scale.

Keywords: steroids; polycyclic aromatic compounds; naphthalenes; biaryls.

^{*} Corresponding author. Tel.: +49-(0)30-468-17190; fax: +49-(0)30-468-97190; e-mail: matthias.schneider@schering.de

[†] Presented partly at ISHC 12, Stockholm, 27th August–1st September, 2000.

⁰⁰⁴⁰⁻⁴⁰³⁹/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02154-8

Our new goals were (i) to generate a new family of substituted BINOL-like structures which could also be of interest as potential ligands; and (ii) to discover a synthetic route making the BINOL-type ligands \mathbf{R}_{ax} -, **S_{ax}-2** available in its diastereopure forms.

2. Results and discussion

The starting point of our investigation was the bisketone derivatives **Rax-**, **Sax-3** (Scheme 1).

As we had envisioned, we were able to use \mathbf{R}_{ax} , \mathbf{S}_{ax} -3 as the centre of a 'chemical modular construction system' to obtain a new family of differently substituted steroidal BINOL-type structures. The reduction of **3** using NaBH₄ gave rise to the tetraols \mathbf{R}_{ax} , \mathbf{S}_{ax} -5 in quantitative yield.5 The hydrazone derivatives **Rax-**, **Sax-** $\vec{6}$ and \vec{R}_{ax} , \vec{S}_{ax} -7 were obtained in 100% and 98% yield, respectively, by simply refluxing **3** with 4.2 equiv. of the necessary hydrazine derivative in EtOH.6 The employment of an excess of ethyleneglycol and of triethyl orthoformate in toluene using catalytic amounts of *p*-toluenesulfonic acid furnished the desired bisketals

Scheme 1. *Reagents and conditions*: (a) NaBH4, MeOH/THF 1:1, quant.; (b) *p*-toluenesulfonylhydrazine, EtOH, quant.; (c) hydrazine hydrate, EtOH, 98%; (d) 11 equiv. triethyl orthoformate, 0.1 equiv. PTSA, ethyleneglycol/toluene 1/6; 92%; (e) ethane dithiole, BF_3Et_2O , CH_2Cl_2 , quant.; (f) 4-pyridylethylmercaptan, excess BF_3Et_2O , $CH_2Cl_2/dichloroethane$ 1/1, 18% S_{ax} -19.

Scheme 2. *Reagents and conditions*: (a) excess Raney-nickel, THF/EtOH 1:4, 95% \mathbb{R}_{ax} -2/91% \mathbb{S}_{ax} -2; (b) Tf₂O, NEt₃, toluene; 100% **Rax-11**/85% **Sax-11**.

 \mathbf{R}_{ax} , \mathbf{S}_{ax} -8 in very good yield (92%).⁷ The bisthioketals \mathbf{R}_{av} , \mathbf{S}_{av} -9 were available via Lewis acid (BF₃·Et₂O) mediated ketalisation with ethane dithiole.8 This reaction was scaled up to 500 g batch sizes without decreasing yields, which were quantitative. As a last example the thioenolether S_{ax} -10 was synthesized by treating **Sax-3** with an excess of 4-pyridylethylmercaptan and $BF₃Et₂O$ at 50°C.⁸ The yield of S_{ax} -19 is only moderate up to now (18%), but nevertheless this compound could possibly exhibit interesting properties against metals (e.g. Cu) (Scheme 1).

Having in hand the bisthioketals \mathbf{R}_{ax} , \mathbf{S}_{ax} -9, we were now able to obtain the desired compounds \mathbf{R}_{ax} , \mathbf{S}_{ax} -2 in its enantiopure forms in only one additional step. Treatment of **Rax-**, **Sax-9** with an excess (15-fold) Raney-Nickel furnished **Rax-2** and **Sax-2** in 95 and 91% yield, respectively, as crystalline compounds after workup.8,9 Again the batch sizes have been scaled up to 700 g of starting materials **Rax-**, **Sax-9** without decreasing yields. In addition, this achievement leads the way towards an easier and cheaper way of synthesizing the bistriflates \mathbf{R}_{av} , \mathbf{S}_{av} -11, which are the final intermediates in the synthesis of \mathbf{R}_{ax} , \mathbf{S}_{ax} -4.⁴ Our original route also started with the bisketone derivatives \mathbf{R}_{ax} , \mathbf{S}_{ax} -3 which were transformed into the corresponding tetratriflates (excess Tf_2O) first and then the enol triflates in position 17 (steroid nomenclature) were reduced using hydrogen and PtO₂ as catalyst to obtain \mathbf{R}_{ax} , \mathbf{S}_{ax} -11. This procedure was not very reliable and in addition is very costly regarding scale-up. In contrast, reaction of **Rax-**, **Sax-2** with triethylamine and triflic acid anhydride in toluene at 0°C, coupled with easy scale-up, gave rise to \mathbf{R}_{ax} -11 in excellent yield (100%) and \mathbf{S}_{ax} -11 in good yield (85%) ^{2,3}. The difference in yield is probably due to different solubilities of the *R*- versus the *S*-compounds influencing the work-up as well as the purification of **2** and **11** (Scheme 2).

3. Conclusion

In conclusion, we have reached all our goals by creating a new family of bissteroidal BINOL-type ligands with the bisketone derivatives \mathbf{R}_{ax} , \mathbf{S}_{ax} -3 as centre point thereby affording the ligands \mathbf{R}_{ax} , \mathbf{S}_{ax} -2 in its diastereopure forms. In addition a more (cost) efficient way of synthesizing the bistriflates \mathbf{R}_{ax} , \mathbf{S}_{ax} -11 has been developed.

The bisketone derivatives \mathbf{R}_{ax} , \mathbf{S}_{ax} -3 have already been used as chiral ligands in the addition of diethyl zinc to aldehydes by Dimitrov et al.¹⁰ In addition phosphate derivatives of \mathbf{R}_{ax} , \mathbf{S}_{ax} -2 have been employed successfully as ligands for enantioselective 1,3-dipolar cycloaddition of carbonyl ylides by Hodgson et al.¹¹ Currently the chiral ligands described therein are tested in different asymmetric reactions. The results will be published in due course.

Acknowledgements

We thank T. Hilsmann, M. Stoppa, T. Schadendorf and J. Santos for experimental assistance.

References

- 1. (a) For a review, see: Rosoni, C.; Franzini, L.; Raffaelli, A.; Salvadori, P. *Synthesis* **1992**, 503 and references cited therein; (b) For applications, see: Bao, J.; Wulff, W. D.; Dominy, J. B.; Fumo, M. J.; Grant, E. B.; Rob, A. C.; Whitcomb, M. C.; Yeung, S.-M.; Ostrander, R. L.; Rheingold, A. L. *J*. *Am*. *Chem*. *Soc*. **1996**, 118, 3392 and references cited therein.
- 2. (a) Cai, D.; Payack, J. F.; Verhoeven, T. R. US Patent 5,399,771; (b) Cai, D.; Payack, J. F.; Bender, D. R.; Hughes, D. L.; Verhoeven, T. R.; Reider, P. J. *J*. *Org*. *Chem*. **1994**, 59, 7180 and references cited therein.
- 3. Enev, V.; Ewers, Ch. L. J.; Harre, M.; Nickisch, K.; Mohr, J. T. *J*. *Org*. *Chem*. **1997**, 62, 7092.
- 4. Enev, V.; Harre, M.; Nickisch, K.; Schneider, M.; Mohr, J. *Tetrahedron*: *Asymmetry* **2000**, 11, 1767–1779 and references cited therein.
- 5. All new compounds have been unambigously characterized by NMR $(^1H$ and ^{13}C), IR and MS (high resolution).
- 6. Kabalka, G. W.; Maddox, J. T.; Bogas, E.; Kelley, S. W. *J*. *Org*. *Chem*. **1997**, 62, 3688–3695 and references cited therein.
- 7. Schering procedure.
- 8. Ihara, M.; Suzuki, T.; Katogi, M.; Taniguchi, N.; Fukumoto, K. *J*. *Chem*. *Soc*., *Perkin Trans*. 1 **1992**, 865–873.
- 9. Kluge, A. F.; Maddox, M. L.; Partridge, L. G. *J*. *Org*. *Chem*. **1985**, 50, 2359–2365.
- 10. Kostova, K.; Genov, M.; Philipova, I.; Dimitrov, V. *Tetrahedron*: *Asymmetry* **2000**, 11, 3253–3256.
- 11. Hodgson, D. M.; Stupple, P. A.; Pierard, F. Y. T. M.; Labande, A. H.; Johnstone, C. *Chem*. *Eur*. *J*. **2001**, ⁷, 4465–4476.